149 lines
7.1 KiB
Haskell
149 lines
7.1 KiB
Haskell
|
-- requires cabal install --lib megaparsec parser-combinators heap vector
|
||
|
module Main (main) where
|
||
|
|
||
|
import Control.Applicative.Permutations
|
||
|
import Control.Monad (void, when)
|
||
|
import qualified Data.Char as C
|
||
|
import Data.Either
|
||
|
import Data.Functor
|
||
|
import qualified Data.Heap as H
|
||
|
import qualified Data.List as L
|
||
|
import qualified Data.Map as M
|
||
|
import Data.Maybe
|
||
|
import qualified Data.Set as S
|
||
|
import qualified Data.Vector as V
|
||
|
import qualified Data.Vector.Unboxed as VU
|
||
|
import Data.Void (Void)
|
||
|
import Text.Megaparsec
|
||
|
import Text.Megaparsec.Char
|
||
|
|
||
|
import Debug.Trace
|
||
|
|
||
|
exampleExpectedOutput = Just 154
|
||
|
|
||
|
data Direction = N | S | E | W deriving (Eq, Show)
|
||
|
data Tile = Floor | Wall | Slope Direction deriving (Eq, Show)
|
||
|
type Line = V.Vector Tile
|
||
|
type Input = V.Vector Line
|
||
|
|
||
|
type Parser = Parsec Void String
|
||
|
|
||
|
parseDirection :: Parser Direction
|
||
|
parseDirection = char '^' $> N
|
||
|
<|> char 'v' $> S
|
||
|
<|> char '>' $> E
|
||
|
<|> char '<' $> W
|
||
|
|
||
|
parseTile :: Parser Tile
|
||
|
parseTile = char '#' $> Wall
|
||
|
<|> char '.' $> Floor
|
||
|
<|> Slope <$> parseDirection
|
||
|
|
||
|
parseLine :: Parser Line
|
||
|
parseLine = do
|
||
|
line <- some parseTile <* eol
|
||
|
return $ V.generate (length line) (line !!)
|
||
|
|
||
|
parseInput' :: Parser Input
|
||
|
parseInput' = do
|
||
|
line <- some parseLine <* eof
|
||
|
return $ V.generate (length line) (line !!)
|
||
|
|
||
|
parseInput :: String -> IO Input
|
||
|
parseInput filename = do
|
||
|
input <- readFile filename
|
||
|
case runParser parseInput' filename input of
|
||
|
Left bundle -> error $ errorBundlePretty bundle
|
||
|
Right input' -> return input'
|
||
|
|
||
|
newtype Cost = Cost Int deriving (Eq, Num, Ord, Show)
|
||
|
newtype NodeId = NodeId Int deriving (Eq, Num, Ord, Show)
|
||
|
newtype X = X Int deriving (Eq, Num, Ord, Show)
|
||
|
newtype Y = Y Int deriving (Eq, Num, Ord, Show)
|
||
|
type Adjacencies = M.Map NodeId [(NodeId, Cost)] -- keys are nodeIds and values are a list of (NodeId, cost)
|
||
|
type Nodes = M.Map (X, Y) NodeId -- keys are (x, y) and values are nodeIds
|
||
|
type Visited = M.Map (X, Y) ()
|
||
|
|
||
|
compute :: Input -> Maybe Cost
|
||
|
compute input = longuestPath adjacencies (let Just (a:[]) = M.lookup 0 adjacencies in a)
|
||
|
where
|
||
|
longuestPath :: Adjacencies -> (NodeId, Cost) -> Maybe Cost
|
||
|
longuestPath adj (n, c) | n == 1 = Just $ c + 1
|
||
|
| l' == [] = Nothing
|
||
|
| otherwise = Just $ c + maximum l'
|
||
|
where
|
||
|
Just l = M.lookup n adj
|
||
|
l' = catMaybes $ L.map (longuestPath adj') l
|
||
|
adj' = M.delete n $ M.map (L.filter (\(i, _) -> n /= i)) adj
|
||
|
(adjacencies, nodes, _) = explore 0 (M.fromList [(0, []), (1, [])]) (M.fromList [((startx, 0), 0), ((finishx, finishy), 1)]) (M.fromList [((startx, 0), ()), ((finishx, finishy), ())]) startx 1 S
|
||
|
explore :: NodeId -> Adjacencies -> Nodes -> Visited -> X -> Y -> Direction -> (Adjacencies, Nodes, Visited)
|
||
|
explore node adjacencies nodes visited x y d = L.foldl' explore' (adjacencies, nodes, visited) $ nextSteps x y d
|
||
|
where
|
||
|
explore' :: (Adjacencies, Nodes, Visited) -> (X, Y, Direction, Bool) -> (Adjacencies, Nodes, Visited)
|
||
|
explore' acc@(adjacencies, nodes, visited) (x, y, d, u) | isNothing destination = acc
|
||
|
| otherwise = case M.lookup (x', y') nodes of
|
||
|
Nothing -> explore node' adjacencies'' nodes' visited' x' y' d
|
||
|
Just id -> (adjacencies'', nodes', visited')
|
||
|
where
|
||
|
destination = let s = goDownAPath visited False x y 1 d in s
|
||
|
Just (visited', x', y', cost, u') = destination
|
||
|
adjacencies'' = M.adjust (\l -> (node', cost):l) node $ M.adjust (\l -> if u || u' then l else (node, cost):l) node' adjacencies'
|
||
|
nodes' = M.insert (x', y') node' nodes
|
||
|
(node', adjacencies') = case M.lookup (x', y') nodes of
|
||
|
Nothing -> let s = NodeId (M.size nodes) in (s, M.insert s [] adjacencies)
|
||
|
Just node' -> (node', adjacencies)
|
||
|
goDownAPath :: Visited -> Bool -> X -> Y -> Cost -> Direction -> Maybe (Visited, X, Y, Cost, Bool) -- returns the next intersection's coordinates and cost, and if it is unidirectional
|
||
|
goDownAPath visited u x y c d | M.member (x, y) nodes = Just (visited, x, y, c, u) -- we reached an already known intersection
|
||
|
| M.member (x, y) visited = Nothing -- this tile has already been visited
|
||
|
| isImpossibleSlope = Nothing
|
||
|
| ns == [] = Nothing -- we hit a deadend
|
||
|
| L.length ns > 1 = Just (visited', x, y, c, u'') -- we hit a crossroads
|
||
|
| otherwise = goDownAPath visited' u'' x' y' (c+1) d'
|
||
|
where
|
||
|
(x', y', d', u') = head ns
|
||
|
u'' = u || u'
|
||
|
ns = nextSteps x y d
|
||
|
visited' = M.insert (x, y) () visited
|
||
|
isImpossibleSlope = case getTile (x, y) of
|
||
|
Slope s -> s /= d
|
||
|
otherwise -> False
|
||
|
getTile :: (X, Y) -> Tile
|
||
|
getTile (X x, Y y) = input V.! y V.! x
|
||
|
nextSteps :: X -> Y -> Direction -> [(X, Y, Direction, Bool)] -- get the list of possible next steps at a point, given where we came from
|
||
|
nextSteps x y d = L.map augmentWithUnidirectionality $ L.filter possible [(x-1, y, W), (x+1, y, E), (x, y-1, N), (x, y+1, S)]
|
||
|
where
|
||
|
augmentWithUnidirectionality :: (X, Y, Direction) -> (X, Y, Direction, Bool)
|
||
|
augmentWithUnidirectionality (x, y, d) = (x, y, d, isSlope $ getTile (x, y))
|
||
|
isSlope :: Tile -> Bool
|
||
|
--isSlope (Slope _) = True
|
||
|
isSlope _ = False
|
||
|
possible :: (X, Y, Direction) -> Bool
|
||
|
possible (x', y', d') | t == Wall = False
|
||
|
| d == opposite d' = False -- no going back
|
||
|
-- | t == Floor = True
|
||
|
| otherwise = True -- o == d' -- our direction must match the slope <- NO, this prevents us from properly finding intersections
|
||
|
where
|
||
|
t = getTile (x', y')
|
||
|
Slope o = t
|
||
|
Just start = V.findIndex (== Floor) $ input V.! 0
|
||
|
startx = X start
|
||
|
Just finish = V.findIndex (== Floor) $ input V.! finishyy
|
||
|
finishx = X finish
|
||
|
finishyy = V.length input - 1
|
||
|
finishy = Y finishyy
|
||
|
xydToxy :: (a, b, c) -> (a, b)
|
||
|
xydToxy (x, y, _) = (x, y)
|
||
|
opposite :: Direction -> Direction
|
||
|
opposite N = S
|
||
|
opposite S = N
|
||
|
opposite E = W
|
||
|
opposite W = E
|
||
|
|
||
|
main :: IO ()
|
||
|
main = do
|
||
|
example <- parseInput "example"
|
||
|
let exampleOutput = compute example
|
||
|
when (exampleOutput /= exampleExpectedOutput) (error $ "example failed: got " ++ show exampleOutput ++ " instead of " ++ show exampleExpectedOutput)
|
||
|
input <- parseInput "input"
|
||
|
print $ compute input
|