2023-23 part 2 in haskell
This commit is contained in:
parent
b2db387ff3
commit
7ab6970f8d
1 changed files with 148 additions and 0 deletions
148
2023/23-A_Long_Walk/second.hs
Normal file
148
2023/23-A_Long_Walk/second.hs
Normal file
|
@ -0,0 +1,148 @@
|
|||
-- requires cabal install --lib megaparsec parser-combinators heap vector
|
||||
module Main (main) where
|
||||
|
||||
import Control.Applicative.Permutations
|
||||
import Control.Monad (void, when)
|
||||
import qualified Data.Char as C
|
||||
import Data.Either
|
||||
import Data.Functor
|
||||
import qualified Data.Heap as H
|
||||
import qualified Data.List as L
|
||||
import qualified Data.Map as M
|
||||
import Data.Maybe
|
||||
import qualified Data.Set as S
|
||||
import qualified Data.Vector as V
|
||||
import qualified Data.Vector.Unboxed as VU
|
||||
import Data.Void (Void)
|
||||
import Text.Megaparsec
|
||||
import Text.Megaparsec.Char
|
||||
|
||||
import Debug.Trace
|
||||
|
||||
exampleExpectedOutput = Just 154
|
||||
|
||||
data Direction = N | S | E | W deriving (Eq, Show)
|
||||
data Tile = Floor | Wall | Slope Direction deriving (Eq, Show)
|
||||
type Line = V.Vector Tile
|
||||
type Input = V.Vector Line
|
||||
|
||||
type Parser = Parsec Void String
|
||||
|
||||
parseDirection :: Parser Direction
|
||||
parseDirection = char '^' $> N
|
||||
<|> char 'v' $> S
|
||||
<|> char '>' $> E
|
||||
<|> char '<' $> W
|
||||
|
||||
parseTile :: Parser Tile
|
||||
parseTile = char '#' $> Wall
|
||||
<|> char '.' $> Floor
|
||||
<|> Slope <$> parseDirection
|
||||
|
||||
parseLine :: Parser Line
|
||||
parseLine = do
|
||||
line <- some parseTile <* eol
|
||||
return $ V.generate (length line) (line !!)
|
||||
|
||||
parseInput' :: Parser Input
|
||||
parseInput' = do
|
||||
line <- some parseLine <* eof
|
||||
return $ V.generate (length line) (line !!)
|
||||
|
||||
parseInput :: String -> IO Input
|
||||
parseInput filename = do
|
||||
input <- readFile filename
|
||||
case runParser parseInput' filename input of
|
||||
Left bundle -> error $ errorBundlePretty bundle
|
||||
Right input' -> return input'
|
||||
|
||||
newtype Cost = Cost Int deriving (Eq, Num, Ord, Show)
|
||||
newtype NodeId = NodeId Int deriving (Eq, Num, Ord, Show)
|
||||
newtype X = X Int deriving (Eq, Num, Ord, Show)
|
||||
newtype Y = Y Int deriving (Eq, Num, Ord, Show)
|
||||
type Adjacencies = M.Map NodeId [(NodeId, Cost)] -- keys are nodeIds and values are a list of (NodeId, cost)
|
||||
type Nodes = M.Map (X, Y) NodeId -- keys are (x, y) and values are nodeIds
|
||||
type Visited = M.Map (X, Y) ()
|
||||
|
||||
compute :: Input -> Maybe Cost
|
||||
compute input = longuestPath adjacencies (let Just (a:[]) = M.lookup 0 adjacencies in a)
|
||||
where
|
||||
longuestPath :: Adjacencies -> (NodeId, Cost) -> Maybe Cost
|
||||
longuestPath adj (n, c) | n == 1 = Just $ c + 1
|
||||
| l' == [] = Nothing
|
||||
| otherwise = Just $ c + maximum l'
|
||||
where
|
||||
Just l = M.lookup n adj
|
||||
l' = catMaybes $ L.map (longuestPath adj') l
|
||||
adj' = M.delete n $ M.map (L.filter (\(i, _) -> n /= i)) adj
|
||||
(adjacencies, nodes, _) = explore 0 (M.fromList [(0, []), (1, [])]) (M.fromList [((startx, 0), 0), ((finishx, finishy), 1)]) (M.fromList [((startx, 0), ()), ((finishx, finishy), ())]) startx 1 S
|
||||
explore :: NodeId -> Adjacencies -> Nodes -> Visited -> X -> Y -> Direction -> (Adjacencies, Nodes, Visited)
|
||||
explore node adjacencies nodes visited x y d = L.foldl' explore' (adjacencies, nodes, visited) $ nextSteps x y d
|
||||
where
|
||||
explore' :: (Adjacencies, Nodes, Visited) -> (X, Y, Direction, Bool) -> (Adjacencies, Nodes, Visited)
|
||||
explore' acc@(adjacencies, nodes, visited) (x, y, d, u) | isNothing destination = acc
|
||||
| otherwise = case M.lookup (x', y') nodes of
|
||||
Nothing -> explore node' adjacencies'' nodes' visited' x' y' d
|
||||
Just id -> (adjacencies'', nodes', visited')
|
||||
where
|
||||
destination = let s = goDownAPath visited False x y 1 d in s
|
||||
Just (visited', x', y', cost, u') = destination
|
||||
adjacencies'' = M.adjust (\l -> (node', cost):l) node $ M.adjust (\l -> if u || u' then l else (node, cost):l) node' adjacencies'
|
||||
nodes' = M.insert (x', y') node' nodes
|
||||
(node', adjacencies') = case M.lookup (x', y') nodes of
|
||||
Nothing -> let s = NodeId (M.size nodes) in (s, M.insert s [] adjacencies)
|
||||
Just node' -> (node', adjacencies)
|
||||
goDownAPath :: Visited -> Bool -> X -> Y -> Cost -> Direction -> Maybe (Visited, X, Y, Cost, Bool) -- returns the next intersection's coordinates and cost, and if it is unidirectional
|
||||
goDownAPath visited u x y c d | M.member (x, y) nodes = Just (visited, x, y, c, u) -- we reached an already known intersection
|
||||
| M.member (x, y) visited = Nothing -- this tile has already been visited
|
||||
| isImpossibleSlope = Nothing
|
||||
| ns == [] = Nothing -- we hit a deadend
|
||||
| L.length ns > 1 = Just (visited', x, y, c, u'') -- we hit a crossroads
|
||||
| otherwise = goDownAPath visited' u'' x' y' (c+1) d'
|
||||
where
|
||||
(x', y', d', u') = head ns
|
||||
u'' = u || u'
|
||||
ns = nextSteps x y d
|
||||
visited' = M.insert (x, y) () visited
|
||||
isImpossibleSlope = case getTile (x, y) of
|
||||
Slope s -> s /= d
|
||||
otherwise -> False
|
||||
getTile :: (X, Y) -> Tile
|
||||
getTile (X x, Y y) = input V.! y V.! x
|
||||
nextSteps :: X -> Y -> Direction -> [(X, Y, Direction, Bool)] -- get the list of possible next steps at a point, given where we came from
|
||||
nextSteps x y d = L.map augmentWithUnidirectionality $ L.filter possible [(x-1, y, W), (x+1, y, E), (x, y-1, N), (x, y+1, S)]
|
||||
where
|
||||
augmentWithUnidirectionality :: (X, Y, Direction) -> (X, Y, Direction, Bool)
|
||||
augmentWithUnidirectionality (x, y, d) = (x, y, d, isSlope $ getTile (x, y))
|
||||
isSlope :: Tile -> Bool
|
||||
--isSlope (Slope _) = True
|
||||
isSlope _ = False
|
||||
possible :: (X, Y, Direction) -> Bool
|
||||
possible (x', y', d') | t == Wall = False
|
||||
| d == opposite d' = False -- no going back
|
||||
-- | t == Floor = True
|
||||
| otherwise = True -- o == d' -- our direction must match the slope <- NO, this prevents us from properly finding intersections
|
||||
where
|
||||
t = getTile (x', y')
|
||||
Slope o = t
|
||||
Just start = V.findIndex (== Floor) $ input V.! 0
|
||||
startx = X start
|
||||
Just finish = V.findIndex (== Floor) $ input V.! finishyy
|
||||
finishx = X finish
|
||||
finishyy = V.length input - 1
|
||||
finishy = Y finishyy
|
||||
xydToxy :: (a, b, c) -> (a, b)
|
||||
xydToxy (x, y, _) = (x, y)
|
||||
opposite :: Direction -> Direction
|
||||
opposite N = S
|
||||
opposite S = N
|
||||
opposite E = W
|
||||
opposite W = E
|
||||
|
||||
main :: IO ()
|
||||
main = do
|
||||
example <- parseInput "example"
|
||||
let exampleOutput = compute example
|
||||
when (exampleOutput /= exampleExpectedOutput) (error $ "example failed: got " ++ show exampleOutput ++ " instead of " ++ show exampleExpectedOutput)
|
||||
input <- parseInput "input"
|
||||
print $ compute input
|
Loading…
Add table
Reference in a new issue