1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
|
---
title: Advent of code 2023 in haskell
description: I improved in haskell this year and still love parsing
date: 2024-11-22
tags:
- haskell
---
## Introduction
I did the [advent of code 2023](https://adventofcode.com/2023) in haskell, it was a fun experience as always! Why writing about this now? Because I just finished the last puzzle as a warm up for the upcoming year's puzzles!
I did the first 11 puzzles on time last December but the "one puzzle a day" schedule is a bit much when life happens around you. I therefore took a break and did a few more puzzles in mid January. Upon reaching [the 17th puzzle](https://adventofcode.com/2023/day/17) (the shortest paths with weird constraints puzzle) I took another break until June were I pushed through until [Day 24th](https://adventofcode.com/2023/day/24) (the hailstorm that forces you to do math). I took another break only to pick it up this week. I just finished days 24 and 25, completing the set!
This article explains some patterns I used for solving the puzzles. I always use megaparsec to parse the input, even when it is overkill... just because I find it so fun to work with.
## Haskell for puzzles
### Parsing permutations
Relying on megaparsec payed off from day 2 where you need to parse this beauty:
```
Game 1: 3 blue, 4 red; 1 red, 2 green, 6 blue; 2 green
Game 2: 1 blue, 2 green; 3 green, 4 blue, 1 red; 1 green, 1 blue
Game 3: 8 green, 6 blue, 20 red; 5 blue, 4 red, 13 green; 5 green, 1 red
Game 4: 1 green, 3 red, 6 blue; 3 green, 6 red; 3 green, 15 blue, 14 red
Game 5: 6 red, 1 blue, 3 green; 2 blue, 1 red, 2 green
```
You got an ID, then some draws separated by `;`. A draw is a set of colors given out of order, which I see as a clear cut case of running permutations:
```haskell
data Draw = Draw Int Int Int deriving (Eq, Show)
data Game = Game Int [Draw] deriving Show
type Input = [Game]
type Parser = Parsec Void String
parseColor :: String -> Parser Int
parseColor color = read <$> try (some digitChar <* hspace <* string color <* optional (string ", "))
parseDraw :: Parser Draw
parseDraw = do
(blue, green, red) <- runPermutation $
(,,) <$> toPermutationWithDefault 0 (parseColor "blue")
<*> toPermutationWithDefault 0 (parseColor "green")
<*> toPermutationWithDefault 0 (parseColor "red")
void . optional $ string "; "
return $ Draw blue green red
parseGame :: Parser Game
parseGame = do
id <- read <$> (string "Game " *> some digitChar <* optional (string ": "))
Game id <$> someTill parseDraw eol
parseInput' :: Parser Input
parseInput' = some parseGame <* eof
```
### Functors and applicatives
I also got better at understanding functors and applicatives, using them to simplify mapping things to types. For example on day 12 you got a map that looks like:
```
???.### 1,1,3
.??..??...?##. 1,1,3
?#?#?#?#?#?#?#? 1,3,1,6
????.#...#... 4,1,1
????.######..#####. 1,6,5
?###???????? 3,2,1
```
Here is how I parsed it:
```haskell
data Tile = Broken | Operational | Unknown deriving Eq
instance Show Tile where
show Broken = "#"
show Operational = "."
show Unknown = "?"
data Row = Row [Tile] [Int] deriving Show
type Input = [Row]
type Parser = Parsec Void String
parseNumber :: Parser Int
parseNumber = read <$> some digitChar <* optional (char ',')
parseTile :: Parser Tile
parseTile = char '#' $> Broken
<|> char '.' $> Operational
<|> char '?' $> Unknown
parseRow :: Parser Row
parseRow = Row <$> some parseTile <* space
<*> some parseNumber <* eol
parseInput' :: Parser Input
parseInput' = some parseRow <* eof
```
The functor usage is very useful for parts where you want to parse one thing but return another thing like:
```haskell
char '#' $> Broken
```
I also used it to parse the integers from the digit characters without any intermediate step, which I find really clean and powerful:
```haskell
parseNumber = read <$> some digitChar <* optional (char ',')
```
The applicative (which is an extension of functors but for types instead of functions) allows this clever structure:
```haskell
parseRow :: Parser Row
parseRow = Row <$> some parseTile <* space
<*> some parseNumber <* eol
```
### Playing poker
Parsing also did all the heavy lifting on day 7 where you need to rank poker like hands. Your input is a list of hands of five cards and a bid:
```
32T3K 765
T55J5 684
KK677 28
KTJJT 220
QQQJA 483
```
Here is the data structure I settled on:
```haskell
data Card = Two | Three | Four | Five | Six | Seven | Eight | Nine | T | J | Q | K | A deriving (Eq, Ord)
data Rank = HighCard
| Pair
| Pairs
| Brelan
| FullHouse
| Quartet
| Quintet
deriving (Eq, Ord, Show)
data Hand = Hand Rank [Card] Int deriving (Eq, Show)
compareCards :: [Card] -> [Card] -> Ordering
compareCards (x:xs) (y:ys) | x == y = compareCards xs ys
| otherwise = x `compare` y
instance Ord Hand where
(Hand a x _) `compare` (Hand b y _) | a == b = compareCards x y
| otherwise = a `compare` b
type Input = [Hand]
```
The hard part of the puzzle is to rank hands, which I decided to compute while parsing because why not!
```haskell
parseCard :: Parser Card
parseCard = char '2' $> Two
<|> char '3' $> Three
<|> char '4' $> Four
<|> char '5' $> Five
<|> char '6' $> Six
<|> char '7' $> Seven
<|> char '8' $> Eight
<|> char '9' $> Nine
<|> char 'T' $> T
<|> char 'J' $> J
<|> char 'Q' $> Q
<|> char 'K' $> K
<|> char 'A' $> A
evalRank :: [Card] -> Rank
evalRank n@(a:b:c:d:e:_) | not (a<=b && b<=c && c<=d && d<=e) = evalRank $ L.sort n
| a==b && b==c && c==d && d==e = Quintet
| (a==b && b==c && c==d) || (b==c && c==d && d==e) = Quartet
| a==b && (b==c || c==d) && d==e = FullHouse
| (a==b && b==c) || (b==c && c==d) || (c==d && d==e) = Brelan
| (a==b && (c==d || d==e)) || (b==c && d==e) = Pairs
| a==b || b==c || c==d || d==e = Pair
| otherwise = HighCard
parseHand :: Parser Hand
parseHand = do
cards <- some parseCard <* char ' '
bid <- read <$> (some digitChar <* eol)
return $ Hand (evalRank cards) cards bid
parseInput' :: Parser Input
parseInput' = some parseHand <* eof
```
With all the heavy lifting already done, computing the solution for part1 of the puzzle is simply:
```haskell
compute :: Input -> Int
compute = sum . zipWith (*) [1..] . map (\(Hand _ _ bid) -> bid) . L.sort
```
This was particularly interesting for part 2 where there is a twist: `J` cards are now jokers, so you need to handle this as a wildcard when ranking hands! After raking my brain for a while, I decided to make the type system bear the complexity by adjusting the data structure to this:
```haskell
data Card = J | Two | Three | Four | Five | Six | Seven | Eight | Nine | T | Q | K | A
instance Eq Card where
J == _ = True
_ == J = True
a == b = show a == show b
instance Ord Card where
a `compare` b = show a `compare` show b
a <= b = show a <= show b
```
With this change, I could now rank the hands with:
```haskell
evalRank :: [Card] -> Rank
evalRank [J, J, J, J, _] = Quintet
evalRank [J, J, J, d, e] | d==e = Quintet
| otherwise = Quartet
evalRank [J, J, c, d, e] | c==d && d==e = Quintet
| c==d || d==e = Quartet
| otherwise = Brelan
evalRank [J, b, c, d, e] | b==c && c==d && d==e = Quintet
| (b==c || d==e) && c==d = Quartet
| b==c && d==e = FullHouse
| b==c || c==d || d==e = Brelan
| otherwise = Pair
evalRank [a, b, c, d, e] | a==b && a==c && a==d && a==e = Quintet
| (a==b && a==c && a==d) || (b==c && b==d && b==e) = Quartet
| a==b && (b==c || c==d) && d==e = FullHouse
| (a==b && b==c) || (b==c && c==d) || (c==d && d==e) = Brelan
| (a==b && (c==d || d==e)) || (b==c && d==e) = Pairs
| a==b || b==c || c==d || d==e = Pair
| otherwise = HighCard
```
## Conclusion
I love haskell, I wish I could use it daily and not just for seasonal puzzles.
|