1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
|
-- requires cabal install --lib megaparsec parser-combinators heap vector
module Main (main) where
import Control.Applicative.Permutations
import Control.Monad (void, when)
import qualified Data.Char as C
import Data.Either
import Data.Functor
import qualified Data.Heap as H
import qualified Data.List as L
import qualified Data.Map as M
import Data.Maybe
import qualified Data.Set as S
import qualified Data.Vector as V
import qualified Data.Vector.Unboxed as VU
import Data.Void (Void)
import Text.Megaparsec
import Text.Megaparsec.Char
import Debug.Trace
exampleExpectedOutput = 19114
data Category = X | M | A | S deriving (Eq, Show)
data Op = Gt | Lt deriving (Eq, Show)
data Action = Accept | Reject | Jmp String deriving (Eq, Show)
data Rule = Cmp Category Op Int Action | RuleAction Action deriving (Eq, Show)
type Workflow = (String, [Rule])
type Workflows = M.Map String [Rule]
data Part = Part Int Int Int Int deriving (Eq, Show)
type Parts = [Part]
data Input = Input Workflows Parts deriving (Eq, Show)
type Parser = Parsec Void String
parseCategory :: Parser Category
parseCategory = char 'x' $> X
<|> char 'm' $> M
<|> char 'a' $> A
<|> char 's' $> S
parseOp :: Parser Op
parseOp = char '>' $> Gt
<|> char '<' $> Lt
parseNumber :: Parser Int
parseNumber = read <$> some digitChar
parseLabel :: Parser String
parseLabel = try $ count' 2 4 letterChar
parseAction :: Parser Action
parseAction = char 'A' $> Accept
<|> char 'R' $> Reject
<|> (Jmp <$> parseLabel)
parseRule :: Parser Rule
parseRule = (RuleAction <$> parseAction)
<|> (Cmp <$> parseCategory <*> parseOp <*> parseNumber <* char ':' <*> parseAction)
parseWorkflow :: Parser Workflow
parseWorkflow = (,) <$> parseLabel <* char '{'
<*> some (parseRule <* optional (char ',')) <* char '}'
parseWorkflows :: Parser Workflows
parseWorkflows = M.fromList <$> some (parseWorkflow <* eol)
parsePart :: Parser Part
parsePart = Part <$> (string "{x=" *> parseNumber)
<*> (string ",m=" *> parseNumber)
<*> (string ",a=" *> parseNumber)
<*> (string ",s=" *> parseNumber <* char '}')
parseParts :: Parser Parts
parseParts = some (parsePart <* eol)
parseInput' :: Parser Input
parseInput' = Input <$> (parseWorkflows <* eol)
<*> (parseParts <* eof)
parseInput :: String -> IO Input
parseInput filename = do
input <- readFile filename
case runParser parseInput' filename input of
Left bundle -> error $ errorBundlePretty bundle
Right input' -> return input'
compute :: Input -> Int
compute (Input workflows parts) = sum $ map compute' parts
where
compute' :: Part -> Int
compute' (Part x m a s) = case evaluate entryPoint of
Accept -> x + m + a + s
Reject -> 0
where
evaluate :: [Rule] -> Action
evaluate (RuleAction (Jmp s):_) = evaluate $ workflows M.! s
evaluate (RuleAction a:_) = a
evaluate (Cmp cat op n r:xs) | matches cat op n x m a s = evaluate [RuleAction r]
| otherwise = evaluate xs
matches X Lt n x _ _ _ = x < n
matches X Gt n x _ _ _ = x > n
matches M Lt n _ m _ _ = m < n
matches M Gt n _ m _ _ = m > n
matches A Lt n _ _ a _ = a < n
matches A Gt n _ _ a _ = a > n
matches S Lt n _ _ _ s = s < n
matches S Gt n _ _ _ s = s > n
entryPoint = workflows M.! "in"
main :: IO ()
main = do
example <- parseInput "example"
let exampleOutput = compute example
when (exampleOutput /= exampleExpectedOutput) (error $ "example failed: got " ++ show exampleOutput ++ " instead of " ++ show exampleExpectedOutput)
input <- parseInput "input"
print $ compute input
|