1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
|
-- requires cabal install --lib megaparsec parser-combinators
module Main (main) where
import Control.Monad (void, when, zipWithM)
import Data.Either (fromRight)
import Data.List (foldl')
import Data.Void (Void)
import Text.Megaparsec
import Text.Megaparsec.Char
import System.Exit (die)
exampleExpectedOutput = 1068781
type Input = [Maybe Int]
type Parser = Parsec Void String
parseShuttle :: Parser (Maybe Int)
parseShuttle = do
num <- (Just . read <$> some digitChar) <|> (char 'x' *> return Nothing)
void . optional $ char ','
return $ num
parseOps :: Parser Input
parseOps = do
void $ some digitChar
void $ char '\n'
shuttles <- some parseShuttle
void $ char '\n'
void $ eof
return $ shuttles
parseInput :: String -> IO Input
parseInput filename = do
input <- readFile filename
case runParser parseOps filename input of
Left bundle -> die $ errorBundlePretty bundle
Right ops -> return ops
-- From rosetta code https://rosettacode.org/wiki/Chinese_remainder_theorem#Haskell
egcd :: Int -> Int -> (Int, Int)
egcd _ 0 = (1, 0)
egcd a b = (t, s - q * t)
where
(s, t) = egcd b r
(q, r) = a `quotRem` b
modInv :: Int -> Int -> Either String Int
modInv a b =
case egcd a b of
(x, y)
| a * x + b * y == 1 -> Right x
| otherwise ->
Left $ "No modular inverse for " ++ show a ++ " and " ++ show b
chineseRemainder :: [Int] -> [Int] -> Either String Int
chineseRemainder residues modulii =
zipWithM modInv crtModulii modulii >>=
(Right . (`mod` modPI) . sum . zipWith (*) crtModulii . zipWith (*) residues)
where
modPI = product modulii
crtModulii = (modPI `div`) <$> modulii
-- end of snippet from rosetta code
compute :: Input -> Int
compute input = fromRight 0 . uncurry chineseRemainder $ unzip $ fst $ foldl' accumul ([], 0) input
where
accumul :: ([(Int, Int)], Int) -> Maybe Int -> ([(Int, Int)], Int)
accumul (acc, i) Nothing = (acc, i+1)
accumul (acc, i) (Just v) = (acc ++ [(-i, v)], i+1)
main :: IO ()
main = do
example <- parseInput "example"
let exampleOutput = compute example
when (exampleOutput /= exampleExpectedOutput) (die $ "example failed: got " ++ show exampleOutput ++ " instead of " ++ show exampleExpectedOutput)
input <- parseInput "input"
print $ compute input
|