1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
|
-- requires cabal install --lib megaparsec parser-combinators
module Main (main) where
import Control.Monad (void, when)
import Data.List (foldl')
import Data.Void (Void)
import Text.Megaparsec
import Text.Megaparsec.Char
import System.Exit (die)
exampleExpectedOutput = 25
data Action = N | S | E | W | L | R | F
data Heading = HN | HS | HE | HW
data Op = Op Action Int
type Parser = Parsec Void String
parseOp :: Parser Op
parseOp = do
action <- (char 'N' *> return N)
<|> (char 'S' *> return S)
<|> (char 'E' *> return E)
<|> (char 'W' *> return W)
<|> (char 'L' *> return L)
<|> (char 'R' *> return R)
<|> (char 'F' *> return F)
num <- some digitChar
void $ char '\n'
return $ Op action (read num)
parseOps :: Parser [Op]
parseOps = some parseOp <* eof
parseInput :: String -> IO [Op]
parseInput filename = do
input <- readFile filename
case runParser parseOps filename input of
Left bundle -> die $ errorBundlePretty bundle
Right ops -> return ops
compute :: [Op]-> Int
compute ops = (\(x, y, _) -> abs(x)+abs(y)) $ foldl' step (0, 0, HE) ops
where
step :: (Int, Int, Heading) -> Op -> (Int, Int, Heading)
step (x, y, h) (Op N i) = (x, y+i, h)
step (x, y, h) (Op S i) = (x, y-i, h)
step (x, y, h) (Op E i) = (x+i, y, h)
step (x, y, h) (Op W i) = (x-i, y, h)
step (x, y, HN) (Op F i) = (x, y+i, HN)
step (x, y, HS) (Op F i) = (x, y-i, HS)
step (x, y, HE) (Op F i) = (x+i, y, HE)
step (x, y, HW) (Op F i) = (x-i, y, HW)
step (x, y, h) (Op a i) = (x, y, turn h a i)
turn :: Heading -> Action -> Int -> Heading
turn h a i = turn' h a mi
where mi = (i `mod` 360) `div` 90
turn' HN L 1 = HW
turn' HN L 2 = HS
turn' HN L 3 = HE
turn' HS L 1 = HE
turn' HS L 2 = HN
turn' HS L 3 = HW
turn' HE L 1 = HN
turn' HE L 2 = HW
turn' HE L 3 = HS
turn' HW L 1 = HS
turn' HW L 2 = HE
turn' HW L 3 = HN
turn' HN R 1 = HE
turn' HN R 2 = HS
turn' HN R 3 = HW
turn' HS R 1 = HW
turn' HS R 2 = HN
turn' HS R 3 = HE
turn' HE R 1 = HS
turn' HE R 2 = HW
turn' HE R 3 = HN
turn' HW R 1 = HN
turn' HW R 2 = HE
turn' HW R 3 = HS
turn' h _ _ = h
main :: IO ()
main = do
example <- parseInput "example"
let exampleOutput = compute example
when (exampleOutput /= exampleExpectedOutput) (die $ "example failed: got " ++ show exampleOutput ++ " instead of " ++ show exampleExpectedOutput)
input <- parseInput "input"
print $ compute input
|