2023-23 part 2 in haskell
This commit is contained in:
		
					parent
					
						
							
								b2db387ff3
							
						
					
				
			
			
				commit
				
					
						7ab6970f8d
					
				
			
		
					 1 changed files with 148 additions and 0 deletions
				
			
		
							
								
								
									
										148
									
								
								2023/23-A_Long_Walk/second.hs
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										148
									
								
								2023/23-A_Long_Walk/second.hs
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,148 @@
 | 
			
		|||
-- requires cabal install --lib megaparsec parser-combinators heap vector
 | 
			
		||||
module Main (main) where
 | 
			
		||||
 | 
			
		||||
import           Control.Applicative.Permutations
 | 
			
		||||
import           Control.Monad                    (void, when)
 | 
			
		||||
import qualified Data.Char                        as C
 | 
			
		||||
import           Data.Either
 | 
			
		||||
import           Data.Functor
 | 
			
		||||
import qualified Data.Heap                        as H
 | 
			
		||||
import qualified Data.List                        as L
 | 
			
		||||
import qualified Data.Map                         as M
 | 
			
		||||
import           Data.Maybe
 | 
			
		||||
import qualified Data.Set                         as S
 | 
			
		||||
import qualified Data.Vector                      as V
 | 
			
		||||
import qualified Data.Vector.Unboxed              as VU
 | 
			
		||||
import           Data.Void                        (Void)
 | 
			
		||||
import           Text.Megaparsec
 | 
			
		||||
import           Text.Megaparsec.Char
 | 
			
		||||
 | 
			
		||||
import           Debug.Trace
 | 
			
		||||
 | 
			
		||||
exampleExpectedOutput = Just 154
 | 
			
		||||
 | 
			
		||||
data Direction = N | S | E | W deriving (Eq, Show)
 | 
			
		||||
data Tile = Floor | Wall | Slope Direction deriving (Eq, Show)
 | 
			
		||||
type Line = V.Vector Tile
 | 
			
		||||
type Input = V.Vector Line
 | 
			
		||||
 | 
			
		||||
type Parser = Parsec Void String
 | 
			
		||||
 | 
			
		||||
parseDirection :: Parser Direction
 | 
			
		||||
parseDirection = char '^' $> N
 | 
			
		||||
             <|> char 'v' $> S
 | 
			
		||||
             <|> char '>' $> E
 | 
			
		||||
             <|> char '<' $> W
 | 
			
		||||
 | 
			
		||||
parseTile :: Parser Tile
 | 
			
		||||
parseTile = char '#' $> Wall
 | 
			
		||||
        <|> char '.' $> Floor
 | 
			
		||||
        <|> Slope <$> parseDirection
 | 
			
		||||
 | 
			
		||||
parseLine :: Parser Line
 | 
			
		||||
parseLine = do
 | 
			
		||||
  line <- some parseTile <* eol
 | 
			
		||||
  return $ V.generate (length line) (line !!)
 | 
			
		||||
 | 
			
		||||
parseInput' :: Parser Input
 | 
			
		||||
parseInput' = do
 | 
			
		||||
  line <- some parseLine <* eof
 | 
			
		||||
  return $ V.generate (length line) (line !!)
 | 
			
		||||
 | 
			
		||||
parseInput :: String -> IO Input
 | 
			
		||||
parseInput filename = do
 | 
			
		||||
  input <- readFile filename
 | 
			
		||||
  case runParser parseInput' filename input of
 | 
			
		||||
    Left bundle  -> error $ errorBundlePretty bundle
 | 
			
		||||
    Right input' -> return input'
 | 
			
		||||
 | 
			
		||||
newtype Cost = Cost Int deriving (Eq, Num, Ord, Show)
 | 
			
		||||
newtype NodeId = NodeId Int deriving (Eq, Num, Ord, Show)
 | 
			
		||||
newtype X = X Int deriving (Eq, Num, Ord, Show)
 | 
			
		||||
newtype Y = Y Int deriving (Eq, Num, Ord, Show)
 | 
			
		||||
type Adjacencies = M.Map NodeId [(NodeId, Cost)] -- keys are nodeIds and values are a list of (NodeId, cost)
 | 
			
		||||
type Nodes = M.Map (X, Y) NodeId -- keys are (x, y) and values are nodeIds
 | 
			
		||||
type Visited = M.Map (X, Y) ()
 | 
			
		||||
 | 
			
		||||
compute :: Input -> Maybe Cost
 | 
			
		||||
compute input = longuestPath adjacencies (let Just (a:[]) = M.lookup 0 adjacencies in a)
 | 
			
		||||
  where
 | 
			
		||||
    longuestPath :: Adjacencies -> (NodeId, Cost) -> Maybe Cost
 | 
			
		||||
    longuestPath adj (n, c) | n == 1 = Just $ c + 1
 | 
			
		||||
                            | l' == [] = Nothing
 | 
			
		||||
                            | otherwise = Just $ c + maximum l'
 | 
			
		||||
      where
 | 
			
		||||
        Just l = M.lookup n adj
 | 
			
		||||
        l' =  catMaybes $ L.map (longuestPath  adj') l
 | 
			
		||||
        adj' = M.delete n $ M.map (L.filter (\(i, _) -> n /= i)) adj
 | 
			
		||||
    (adjacencies, nodes, _) = explore 0 (M.fromList [(0, []), (1, [])]) (M.fromList [((startx, 0), 0), ((finishx, finishy), 1)]) (M.fromList [((startx, 0), ()), ((finishx, finishy), ())]) startx 1 S
 | 
			
		||||
    explore :: NodeId -> Adjacencies -> Nodes -> Visited -> X -> Y -> Direction -> (Adjacencies, Nodes, Visited)
 | 
			
		||||
    explore node adjacencies nodes visited x y d = L.foldl' explore' (adjacencies, nodes, visited) $ nextSteps x y d
 | 
			
		||||
      where
 | 
			
		||||
        explore' :: (Adjacencies, Nodes, Visited) -> (X, Y, Direction, Bool) -> (Adjacencies, Nodes, Visited)
 | 
			
		||||
        explore' acc@(adjacencies, nodes, visited) (x, y, d, u) | isNothing destination = acc
 | 
			
		||||
                                                                | otherwise = case M.lookup (x', y') nodes of
 | 
			
		||||
                                                                    Nothing -> explore node' adjacencies'' nodes' visited' x' y' d
 | 
			
		||||
                                                                    Just id -> (adjacencies'', nodes', visited')
 | 
			
		||||
          where
 | 
			
		||||
            destination = let s = goDownAPath visited False x y 1 d in s
 | 
			
		||||
            Just (visited', x', y', cost, u') = destination
 | 
			
		||||
            adjacencies'' = M.adjust (\l -> (node', cost):l) node $ M.adjust (\l -> if u || u' then l else (node, cost):l) node' adjacencies'
 | 
			
		||||
            nodes' = M.insert (x', y') node' nodes
 | 
			
		||||
            (node', adjacencies') = case M.lookup (x', y') nodes of
 | 
			
		||||
              Nothing    -> let s = NodeId (M.size nodes) in (s, M.insert s [] adjacencies)
 | 
			
		||||
              Just node' -> (node', adjacencies)
 | 
			
		||||
            goDownAPath :: Visited -> Bool -> X -> Y -> Cost -> Direction -> Maybe (Visited, X, Y, Cost, Bool) -- returns the next intersection's coordinates and cost, and if it is unidirectional
 | 
			
		||||
            goDownAPath visited u x y c d | M.member (x, y) nodes = Just (visited, x, y, c, u) -- we reached an already known intersection
 | 
			
		||||
                                          | M.member (x, y) visited = Nothing -- this tile has already been visited
 | 
			
		||||
                                          | isImpossibleSlope = Nothing
 | 
			
		||||
                                          | ns == [] = Nothing -- we hit a deadend
 | 
			
		||||
                                          | L.length ns > 1 = Just (visited', x, y, c, u'') -- we hit a crossroads
 | 
			
		||||
                                          | otherwise = goDownAPath visited' u'' x' y' (c+1) d'
 | 
			
		||||
              where
 | 
			
		||||
                (x', y', d', u') = head ns
 | 
			
		||||
                u'' = u || u'
 | 
			
		||||
                ns = nextSteps x y d
 | 
			
		||||
                visited' = M.insert (x, y) () visited
 | 
			
		||||
                isImpossibleSlope = case getTile (x, y) of
 | 
			
		||||
                  Slope s   -> s /= d
 | 
			
		||||
                  otherwise -> False
 | 
			
		||||
    getTile :: (X, Y) -> Tile
 | 
			
		||||
    getTile (X x, Y y) = input V.! y V.! x
 | 
			
		||||
    nextSteps :: X -> Y -> Direction -> [(X, Y, Direction, Bool)] -- get the list of possible next steps at a point, given where we came from
 | 
			
		||||
    nextSteps x y d = L.map augmentWithUnidirectionality $ L.filter possible [(x-1, y, W), (x+1, y, E), (x, y-1, N), (x, y+1, S)]
 | 
			
		||||
      where
 | 
			
		||||
        augmentWithUnidirectionality :: (X, Y, Direction) -> (X, Y, Direction, Bool)
 | 
			
		||||
        augmentWithUnidirectionality (x, y, d) = (x, y, d, isSlope $ getTile (x, y))
 | 
			
		||||
        isSlope :: Tile -> Bool
 | 
			
		||||
        --isSlope (Slope _) = True
 | 
			
		||||
        isSlope _         = False
 | 
			
		||||
        possible :: (X, Y, Direction) -> Bool
 | 
			
		||||
        possible (x', y', d') | t == Wall = False
 | 
			
		||||
                              | d == opposite d' = False -- no going back
 | 
			
		||||
                              -- | t == Floor = True
 | 
			
		||||
                              | otherwise = True -- o == d' -- our direction must match the slope <- NO, this prevents us from properly finding intersections
 | 
			
		||||
          where
 | 
			
		||||
            t = getTile (x', y')
 | 
			
		||||
            Slope o = t
 | 
			
		||||
    Just start = V.findIndex (== Floor) $ input V.! 0
 | 
			
		||||
    startx = X start
 | 
			
		||||
    Just finish = V.findIndex (== Floor) $ input V.! finishyy
 | 
			
		||||
    finishx = X finish
 | 
			
		||||
    finishyy = V.length input - 1
 | 
			
		||||
    finishy = Y finishyy
 | 
			
		||||
    xydToxy :: (a, b, c) -> (a, b)
 | 
			
		||||
    xydToxy (x, y, _) = (x, y)
 | 
			
		||||
    opposite :: Direction -> Direction
 | 
			
		||||
    opposite N = S
 | 
			
		||||
    opposite S = N
 | 
			
		||||
    opposite E = W
 | 
			
		||||
    opposite W = E
 | 
			
		||||
 | 
			
		||||
main :: IO ()
 | 
			
		||||
main = do
 | 
			
		||||
  example <- parseInput "example"
 | 
			
		||||
  let exampleOutput = compute example
 | 
			
		||||
  when  (exampleOutput /= exampleExpectedOutput)  (error $ "example failed: got " ++ show exampleOutput ++ " instead of " ++ show exampleExpectedOutput)
 | 
			
		||||
  input <- parseInput "input"
 | 
			
		||||
  print $ compute input
 | 
			
		||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue