-- requires cabal install --lib megaparsec parser-combinators heap vector module Main (main) where import Control.Monad (void, when) import Data.Functor import qualified Data.List as L import qualified Data.Map as M import Data.Maybe import Data.Ord (comparing) import qualified Data.Set as S import Data.Void (Void) import Text.Megaparsec import Text.Megaparsec.Char import Debug.Trace exampleExpectedOutput = "co,de,ka,ta" type Computer = String type Link = (Computer, Computer) type Input = [Link] type Parser = Parsec Void String parseLink :: Parser Link parseLink = (,) <$> some letterChar <* char '-' <*> some letterChar parseInput' :: Parser Input parseInput' = some (parseLink <* eol) <* eof parseInput :: String -> IO Input parseInput filename = do input <- readFile filename case runParser parseInput' filename input of Left bundle -> error $ errorBundlePretty bundle Right input' -> return input' type Network = M.Map Computer [Computer] type Negroup = S.Set [Computer] -- All nodes have 4 neighbours in the example and 13 in the input. Since all -- nodes are connected and the example having a biggest group size of 4, I tried -- to solve for this and it worked. This means looking for nodes where all -- neighbors except one are the same. -- -- Luckily, there is a single group of this size that matches. compute :: Input -> String compute links = L.intercalate "," . L.sort . fromJust . snd $ L.foldl' biggestGroup (network, Nothing) hosts where biggestGroup :: (Network, Maybe [Computer]) -> Computer -> (Network, Maybe [Computer]) biggestGroup a@(_, Just _) _ = a biggestGroup (net, Nothing) n | M.size sharedNs == desiredSize = (net', Just $ n : M.keys sharedNs) | otherwise = (net', Nothing) where net' = M.delete n net ns = n : net M.! n sharedNs = M.filter (\ns' -> length (L.filter (\n' -> L.elem n' ns) ns') == desiredSize) net hosts :: [Computer] hosts = M.keys network desiredSize = (length $ network M.! "ta") - 1 network = L.foldl' connect M.empty links connect :: Network -> Link -> Network connect net (c1, c2) = connectOne c1 c2 $ connectOne c2 c1 net connectOne :: Computer -> Computer -> Network -> Network connectOne c1 c2 net = case M.lookup c1 net of Just l -> M.insert c1 (c2:l) net Nothing -> M.insert c1 [c2] net main :: IO () main = do example <- parseInput "example" let exampleOutput = compute example when (exampleOutput /= exampleExpectedOutput) (error $ "example failed: got " ++ show exampleOutput ++ " instead of " ++ show exampleExpectedOutput) input <- parseInput "input" print $ compute input