-- requires cabal install --lib megaparsec parser-combinators heap vector module Main (main) where import Control.Monad (void, when) import Data.Functor import qualified Data.Heap as H import qualified Data.List as L import qualified Data.Map as M import qualified Data.Set as S import qualified Data.Vector as V import Data.Void (Void) import Text.Megaparsec import Text.Megaparsec.Char exampleExpectedOutput = 64 data Tile = Wall | Floor | Start | End deriving (Eq, Show) type Line = V.Vector Tile type Input = V.Vector Line type Parser = Parsec Void String parseTile :: Parser Tile parseTile = char '#' $> Wall <|> char '.' $> Floor <|> char 'E' $> End <|> char 'S' $> Start parseLine :: Parser Line parseLine = do line <- some parseTile <* eol return $ V.generate (length line) (line !!) parseInput' :: Parser Input parseInput' = do line <- some parseLine <* eof return $ V.generate (length line) (line !!) parseInput :: String -> IO Input parseInput filename = do input <- readFile filename case runParser parseInput' filename input of Left bundle -> error $ errorBundlePretty bundle Right input' -> return input' type Cost = Int data Heading = N | S | E | W deriving (Eq, Ord, Show) type Coord = (Int, Int, Heading) type Path = S.Set Coord data Position = Position Coord Cost Path deriving (Eq, Show) instance Ord Position where compare (Position _ c1 _) (Position _ c2 _) = c1 `compare` c2 type Visited = M.Map Coord Int type Candidates = H.MinHeap Position compute :: Input -> Int compute input = S.size $ S.map (\(x, y, _) -> (x, y)) $ walk infinity M.empty $ H.singleton (Position start 0 S.empty) where walk :: Int -> Visited -> Candidates -> S.Set Coord walk l v h | H.size h == 0 = S.empty | c > l = walk l v' h' | t == End = S.union s' $ walk c v' h' | otherwise = walk l v' $ H.union h' $ H.fromList $ nexts v' $ Position p c s' where ([(Position p@(x, y, d) c s)], h') = H.splitAt 1 h t = input V.! y V.! x v' = case M.lookup p v of Just c' -> if c < c' then M.insert p c v else v Nothing -> M.insert p c v s' = S.insert p s nexts :: Visited -> Position -> [Position] nexts v p = L.filter (valid v) $ candidates p valid :: Visited -> Position -> Bool valid v (Position p@(x, y, _) c _) = input V.! y V.! x /= Wall && case M.lookup p v of Just c' -> c <= c' Nothing -> True candidates :: Position -> [Position] candidates (Position (x, y, N) c s) = [ Position (x-1, y, W) (c+1001) s, Position (x+1, y, E) (c+1001) s, Position (x, y-1, N) (c+1) s ] candidates (Position (x, y, S) c s) = [ Position (x-1, y, W) (c+1001) s, Position (x+1, y, E) (c+1001) s, Position (x, y+1, S) (c+1) s ] candidates (Position (x, y, E) c s) = [ Position (x, y-1, N) (c+1001) s, Position (x, y+1, S) (c+1001) s, Position (x+1, y, E) (c+1) s ] candidates (Position (x, y, W) c s) = [ Position (x, y-1, N) (c+1001) s, Position (x, y+1, S) (c+1001) s, Position (x-1, y, W) (c+1) s ] height = V.length input width = V.length (input V.! 0) start = (1, height - 2, E) infinity = maxBound :: Int main :: IO () main = do example <- parseInput "example" let exampleOutput = compute example when (exampleOutput /= exampleExpectedOutput) (error $ "example failed: got " ++ show exampleOutput ++ " instead of " ++ show exampleExpectedOutput) input <- parseInput "input" print $ compute input