-- requires cabal install --lib megaparsec parser-combinators heap vector module Main (main) where import Control.Monad (void, when) import Data.Functor import qualified Data.List as L import qualified Data.Vector as V import Data.Void (Void) import Text.Megaparsec import Text.Megaparsec.Char exampleExpectedOutput = 9021 data Tile = Wall | Box | Lbox | Rbox | Floor | Robot deriving (Eq, Show) type Line = V.Vector Tile type Warehouse = V.Vector Line data Op = N | S | E | W deriving (Eq, Show) data Input = Input Warehouse [Op] deriving Show type Parser = Parsec Void String parseTile :: Parser Tile parseTile = char '#' $> Wall <|> char 'O' $> Box <|> char '.' $> Floor <|> char '@' $> Robot parseLine :: Parser Line parseLine = do line <- some parseTile <* eol return $ V.generate (length line) (line !!) parseOp :: Parser Op parseOp = char '^' $> N <|> char 'v' $> S <|> char '>' $> E <|> char '<' $> W parseInput' :: Parser Input parseInput' = do line <- some parseLine <* eol ops <- some (parseOp <* optional eol) <* eof return $ Input (V.generate (length line) (line !!)) ops parseInput :: String -> IO Input parseInput filename = do input <- readFile filename case runParser parseInput' filename input of Left bundle -> error $ errorBundlePretty bundle Right input' -> return input' type Coord = (Int, Int) next :: Coord -> Op -> Coord next (x, y) N = (x, y-1) next (x, y) S = (x, y+1) next (x, y) E = (x+1, y) next (x, y) W = (x-1, y) showWarehouse :: Warehouse -> String showWarehouse w = V.foldl' showOne [] w showOne acc line = acc ++ (V.foldl' showTile [] line) ++ "\n" showTile acc Wall = acc ++ "#" showTile acc Lbox = acc ++ "[" showTile acc Rbox = acc ++ "]" showTile acc Floor = acc ++ "." showTile acc Robot = acc ++ "@" showTile acc Box = acc ++ "O" compute :: Input -> Int compute (Input warehouse ops) = V.ifoldl' scoreBoxes 0 warehouse'' where scoreBoxes :: Int -> Int -> Line -> Int scoreBoxes acc y line = V.ifoldl' (scoreBox y) acc line scoreBox :: Int -> Int -> Int -> Tile -> Int scoreBox y acc x Lbox = acc + 100 * y + x scoreBox _ acc _ _ = acc warehouse'' = fst $ L.foldl' step (warehouse', start) ops step :: (Warehouse, Coord) -> Op -> (Warehouse, Coord) step a@(w, r@(x, y)) op | t == Wall = a | t == Lbox = case push w r' op of Just w' -> (w', r') Nothing -> a | (op == N || op == S) && t == Rbox = case push w (x'-1, y') op of -- we want to always push boxes from their left side to reduce push cases Just w' ->(w', r') Nothing -> a | t == Rbox = case push w (x', y') op of Just w' -> (w', r') Nothing -> a | otherwise = (w, (x', y')) where r'@(x', y') = next r op t = w V.! y' V.! x' push :: Warehouse -> Coord -> Op -> Maybe Warehouse push w r@(x, y) op | t == Wall = Nothing | (op == N || op == S) && tr == Wall = Nothing | (op == N || op == S) && t == Lbox = case push w (x, y') op of -- pushing a boxes that matches ours Just w' -> let l1 = w' V.! y l1' = l1 V.// [(x, Floor), (x+1, Floor)] l2 = w' V.! y' l2' = l2 V.// [(x, Lbox), (x+1, Rbox)] in Just (w' V.// [(y, l1'), (y', l2')]) Nothing -> Nothing | (op == N || op == S) && t == Rbox = case push w (x-1, y') op of Just w' -> if tr == Lbox then case push w' (x+1, y') op of -- are we pushing two boxes? Just w'' -> let l1 = w'' V.! y l1' = l1 V.// [(x, Floor), (x+1, Floor)] l2 = w'' V.! y' l2' = l2 V.// [(x, Lbox), (x+1, Rbox)] in Just (w'' V.// [(y, l1'), (y', l2')]) Nothing -> Nothing else let l1 = w' V.! y -- or just one on our left l1' = l1 V.// [(x, Floor), (x+1, Floor)] l2 = w' V.! y' l2' = l2 V.// [(x, Lbox), (x+1, Rbox)] in Just (w' V.// [(y, l1'), (y', l2')]) Nothing -> Nothing | (op == N || op == S) && tr == Lbox = case push w (x+1, y') op of -- or just one on our right Just w' -> let l1 = w' V.! y l1' = l1 V.// [(x, Floor), (x+1, Floor)] l2 = w' V.! y' l2' = l2 V.// [(x, Lbox), (x+1, Rbox)] in Just (w' V.// [(y, l1'), (y', l2')]) Nothing -> Nothing | (op == N || op == S) = let l1 = w V.! y -- free space l1' = l1 V.// [(x, Floor), (x+1, Floor)] l2 = w V.! y' l2' = l2 V.// [(x, Lbox), (x+1, Rbox)] in Just (w V.// [(y, l1'), (y', l2')]) | t == Lbox || t == Rbox = case push w (x', y) op of -- East-West movements are simpler Just w' -> let l = w' V.! y l' = l V.// [(x, Floor), (x', to)] in Just (w' V.// [(y, l')]) Nothing -> Nothing | otherwise = let l = w V.! y -- free space l' = l V.// [(x, Floor), (x', to)] in Just (w V.// [(y, l')]) where (x', y') = next r op t = w V.! y' V.! x' tr = w V.! y' V.! (x'+1) to = w V.! y V.! x start = V.ifoldl' findRobot (0, 0) warehouse' findRobot :: (Int, Int) -> Int -> Line -> (Int, Int) findRobot (0, _) y line = (V.ifoldl' findRobotInLine 0 line, y) findRobot a _ _ = a findRobotInLine :: Int -> Int -> Tile -> Int findRobotInLine 0 x Robot = x findRobotInLine a _ _ = a wideWidth = 2 * V.length (warehouse V.! 0) warehouse' = V.map widen warehouse widen line = V.ifoldl' widenOne (V.replicate wideWidth Floor) line widenOne acc x Wall = acc V.// [(2*x, Wall), (2*x+1, Wall)] widenOne acc x Box = acc V.// [(2*x, Lbox), (2*x+1, Rbox)] widenOne acc x Robot = acc V.// [(2*x, Robot)] widenOne acc _ _ = acc main :: IO () main = do example <- parseInput "example2" let exampleOutput = compute example when (exampleOutput /= exampleExpectedOutput) (error $ "example failed: got " ++ show exampleOutput ++ " instead of " ++ show exampleExpectedOutput) input <- parseInput "input" print $ compute input