-- requires cabal install --lib megaparsec parser-combinators heap vector module Main (main) where import Control.Monad (void, when) import Data.Functor import qualified Data.List as L import qualified Data.Vector as V import Data.Void (Void) import Text.Megaparsec import Text.Megaparsec.Char exampleExpectedOutput = 2028 example2ExpectedOutput = 10092 data Tile = Wall | Box | Floor | Robot deriving (Eq, Show) type Line = V.Vector Tile type Warehouse = V.Vector Line data Op = N | S | E | W deriving Show data Input = Input Warehouse [Op] deriving Show type Parser = Parsec Void String parseTile :: Parser Tile parseTile = char '#' $> Wall <|> char 'O' $> Box <|> char '.' $> Floor <|> char '@' $> Robot parseLine :: Parser Line parseLine = do line <- some parseTile <* eol return $ V.generate (length line) (line !!) parseOp :: Parser Op parseOp = char '^' $> N <|> char 'v' $> S <|> char '>' $> E <|> char '<' $> W parseInput' :: Parser Input parseInput' = do line <- some parseLine <* eol ops <- some (parseOp <* optional eol) <* eof return $ Input (V.generate (length line) (line !!)) ops parseInput :: String -> IO Input parseInput filename = do input <- readFile filename case runParser parseInput' filename input of Left bundle -> error $ errorBundlePretty bundle Right input' -> return input' type Coord = (Int, Int) next :: Coord -> Op -> Coord next (x, y) N = (x, y-1) next (x, y) S = (x, y+1) next (x, y) E = (x+1, y) next (x, y) W = (x-1, y) compute :: Input -> Int compute (Input warehouse ops) = V.ifoldl' scoreBoxes 0 warehouse' where scoreBoxes :: Int -> Int -> Line -> Int scoreBoxes acc y line = V.ifoldl' (scoreBox y) acc line scoreBox :: Int -> Int -> Int -> Tile -> Int scoreBox y acc x Box = acc + 100 * y + x scoreBox _ acc _ _ = acc warehouse' = fst $ L.foldl' step (warehouse, start) ops step :: (Warehouse, Coord) -> Op -> (Warehouse, Coord) step a@(w, r@(x, y)) op | t == Wall = a | t == Box = case push w r' op of Just w' -> let line = w' V.! y' line' = line V.// [(x', Floor)] w'' = w' V.// [(y', line')] in (w'', r') Nothing -> a | otherwise = (w, (x', y')) where r'@(x', y') = next r op t = w V.! y' V.! x' push :: Warehouse -> Coord -> Op -> Maybe Warehouse push w r@(x, y) op | t == Wall = Nothing | t == Box = push w (x', y') op | otherwise = Just w' where (x', y') = next r op t = w V.! y' V.! x' line = w V.! y' line' = line V.// [(x', Box)] w' = w V.// [(y', line')] start = V.ifoldl' findRobot (0, 0) warehouse findRobot :: (Int, Int) -> Int -> Line -> (Int, Int) findRobot (0, _) y line = (V.ifoldl' findRobotInLine 0 line, y) findRobot a _ _ = a findRobotInLine :: Int -> Int -> Tile -> Int findRobotInLine 0 x Robot = x findRobotInLine a _ _ = a main :: IO () main = do example <- parseInput "example" let exampleOutput = compute example when (exampleOutput /= exampleExpectedOutput) (error $ "example failed: got " ++ show exampleOutput ++ " instead of " ++ show exampleExpectedOutput) example2 <- parseInput "example2" let example2Output = compute example2 when (example2Output /= example2ExpectedOutput) (error $ "example2 failed: got " ++ show example2Output ++ " instead of " ++ show example2ExpectedOutput) input <- parseInput "input" print $ compute input