-- requires cabal install --lib megaparsec parser-combinators heap vector -- very slow with runghc, use ghc -O3 -o second second.hs and get the result in seconds module Main (main) where import Control.Monad (void, when) import Data.Functor import qualified Data.Map as M import Data.Maybe import qualified Data.Set as S import qualified Data.Vector as V import Data.Void (Void) import Text.Megaparsec import Text.Megaparsec.Char import Debug.Trace exampleExpectedOutput = 6 data Tile = Floor | Wall | Guard deriving (Eq, Ord, Show) type Line = V.Vector Tile type Input = V.Vector Line type Parser = Parsec Void String parseTile :: Parser Tile parseTile = char '.' $> Floor <|> char '#' $> Wall <|> char '^' $> Guard parseLine :: Parser Line parseLine = do line <- some parseTile <* eol return $ V.generate (length line) (line !!) parseInput' :: Parser Input parseInput' = do line <- some parseLine <* eof return $ V.generate (length line) (line !!) parseInput :: String -> IO Input parseInput filename = do input <- readFile filename case runParser parseInput' filename input of Left bundle -> error $ errorBundlePretty bundle Right input' -> return input' type Visited = M.Map (Int, Int, Direction) () data Direction = N | S | E | W deriving (Eq, Ord, Show) next (x, y, N) = (x, y-1) next (x, y, S) = (x, y+1) next (x, y, W) = (x-1, y) next (x, y, E) = (x+1, y) nextRot N = E nextRot E = S nextRot S = W nextRot W = N validCandidate :: (Int, Int) -> Input -> Bool validCandidate (startx, starty) input = step (startx, starty) N M.empty where step :: (Int, Int) -> Direction -> Visited -> Bool step (x, y) h v | M.member (x', y', h) v = True | ahead == Nothing = False | ahead == Just Wall = step (x, y) (nextRot h) v' | otherwise = step (x', y') h v' where v' = M.insert (x, y, h) () v (x', y') = next (x, y, h) ahead = case input V.!? y' of Just l -> l V.!? x' Nothing -> Nothing compute :: Input -> Int compute input = S.size loops where loops = S.filter (validCandidate (startx, starty)) candidates candidates = S.map placeWall . S.fromList . map next $ M.keys steps placeWall (x, y) = let line = (input V.! y) V.// [(x, Wall)] in input V.// [(y, line)] steps = step (startx, starty) N M.empty Just (starty, Just startx) = let startx (y, v) = (y, V.elemIndex Guard v) in V.find (isJust . snd) $ V.map startx $ V.indexed input step :: (Int, Int) -> Direction -> Visited -> Visited step (x, y) h v | ahead == Nothing = v -- do not add the last step so we do not go outside in placeWall | ahead == Just Wall = step (x, y) (nextRot h) v' | otherwise = step (x', y') h v' where v' = M.insert (x, y, h) () v (x', y') = next (x, y, h) ahead = case input V.!? y' of Just l -> l V.!? x' Nothing -> Nothing main :: IO () main = do example <- parseInput "example" let exampleOutput = compute example when (exampleOutput /= exampleExpectedOutput) (error $ "example failed: got " ++ show exampleOutput ++ " instead of " ++ show exampleExpectedOutput) input <- parseInput "input" print $ compute input