-- requires cabal install --lib megaparsec parser-combinators heap vector matrix module Main (main) where import Control.Applicative.Permutations import Control.Monad (void, when) import qualified Data.Char as C import Data.Either import Data.Functor import qualified Data.Heap as H import qualified Data.List as L import qualified Data.Map as M import qualified Data.Matrix as MTX import Data.Maybe import Data.Ratio import qualified Data.Set as S import qualified Data.Vector as V import qualified Data.Vector.Unboxed as VU import Data.Void (Void) import Text.Megaparsec import Text.Megaparsec.Char import Debug.Trace exampleExpectedOutput = 47 type Hail = (Rational, Rational, Rational, Rational, Rational, Rational) type Input = [Hail] type Parser = Parsec Void String parseNumber :: Parser Integer parseNumber = read <$> some (char '-' <|> digitChar) <* optional (char ',') <* optional hspace <* optional (char '@' <* hspace) parseHail :: Parser Hail parseHail = (,,,,,) <$> (fromInteger <$> parseNumber) <*> (fromInteger <$> parseNumber) <*> (fromInteger <$> parseNumber) <*> (fromInteger <$> parseNumber) <*> (fromInteger <$> parseNumber) <*> (fromInteger <$> parseNumber) parseInput' :: Parser Input parseInput' = some (parseHail <* eol) <* eof parseInput :: String -> IO Input parseInput filename = do input <- readFile filename case runParser parseInput' filename input of Left bundle -> error $ errorBundlePretty bundle Right input' -> return input' -- rock in (x, y, z, a, b, c) -- with a known hail (x1, y1, z1, a1, b1, x1) we have -- x + a * t1 = x1 + a1 * t1 -- => t1 = (x - x1) / (a1 - a) = (y - y1) / (b1 - b) -- => (x - x1)(b1 - b) = (y - y1)(a1 - a) -- => xb1 - xb - x1b1 + x1b = ya1 - ya - y1a1 + y1a -- => ya - xb = ya1 - y1a1 + y1a - xb1 + x1b1 - x1b -- With a second hail we also get: -- ya - xb = ya2 - y2a2 + y2a - xb2 + x2b2 - x2b -- By substracting the two equations, we get: -- => y(a1-a2) + a(y1-y2) - x(b1-b2) - b(x1-x2) = y1a1 - y2a2 - x1b1 + x2b2 -- => a(y1-y2) + b(x2-x1) + x(b2-b1) + y(a1-a2) = y1a1 - y2a2 - x1b1 + x2b2 -- We build 4 equations on this template and populate a matrix to triangularise -- and solve for x and y, then repeat with z. compute :: Input -> Rational compute input = x + y + z where (x1, y1, z1, a1, b1, c1) :(x2, y2, z2, a2, b2, c2) :(x3, y3, z3, a3, b3, c3) :(x4, y4, z4, a4, b4, c4) :(x5, y5, z5, a5, b5, c5) :_ = input (Right mxy) = MTX.rref $ MTX.fromList 4 5 [ y1-y2, x2-x1, b2-b1, a1-a2, y1*a1-y2*a2-x1*b1+x2*b2 , y1-y3, x3-x1, b3-b1, a1-a3, y1*a1-y3*a3-x1*b1+x3*b3 , y1-y4, x4-x1, b4-b1, a1-a4, y1*a1-y4*a4-x1*b1+x4*b4 , y1-y5, x5-x1, b5-b1, a1-a5, y1*a1-y5*a5-x1*b1+x5*b5 ] (Right mxz) = MTX.rref $ MTX.fromList 4 5 [ z1-z2, x2-x1, c2-c1, a1-a2, z1*a1-z2*a2-x1*c1+x2*c2 , z1-z3, x3-x1, c3-c1, a1-a3, z1*a1-z3*a3-x1*c1+x3*c3 , z1-z4, x4-x1, c4-c1, a1-a4, z1*a1-z4*a4-x1*c1+x4*c4 , z1-z5, x5-x1, c5-c1, a1-a5, z1*a1-z5*a5-x1*c1+x5*c5 ] y = mxy MTX.! (4, 5) x = mxy MTX.! (3, 5) z = mxz MTX.! (4, 5) main :: IO () main = do example <- parseInput "example" let exampleOutput = compute example when (exampleOutput /= exampleExpectedOutput) (error $ "example failed: got " ++ show exampleOutput ++ " instead of " ++ show exampleExpectedOutput) input <- parseInput "input" print $ compute input