-- requires cabal install --lib megaparsec parser-combinators heap vector module Main (main) where import Control.Applicative.Permutations import Control.Monad (void, when) import qualified Data.Char as C import Data.Either import Data.Functor import qualified Data.Heap as H import qualified Data.List as L import qualified Data.Map as M import Data.Maybe import qualified Data.Set as S import qualified Data.Vector as V import qualified Data.Vector.Unboxed as VU import Data.Void (Void) import Text.Megaparsec import Text.Megaparsec.Char import Debug.Trace data Tile = Start | Plot | Rock deriving Eq instance Show Tile where show Start = "S" show Plot = "." show Rock = "#" type Line = V.Vector Tile type Input = V.Vector Line type Parser = Parsec Void String parseTile :: Parser Tile parseTile = char 'S' $> Start <|> char '.' $> Plot <|> char '#' $> Rock parseLine :: Parser Line parseLine = do line <- some parseTile <* eol return $ V.generate (length line) (line !!) parseInput' :: Parser Input parseInput' = do line <- some parseLine <* eof return $ V.generate (length line) (line !!) parseInput :: String -> IO Input parseInput filename = do input <- readFile filename case runParser parseInput' filename input of Left bundle -> error $ errorBundlePretty bundle Right input' -> return input' type Steps = M.Map (Int, Int) () -- 26501365 = 202300 * 131 + 65 compute :: Input -> Integer compute input = let steps = compute' 65 start steps' = compute' 131 steps steps'' = compute' 131 steps' steps''' = compute' 131 steps'' -- lagrange polynomial interpolation for the quadratic function f :: Integer -> Integer f x = let lamb xi = product (map (\xj -> (x-xj)) (L.delete xi xs)) `div` product (map (\xj -> (xi-xj)) (L.delete xi xs)) in sum $ zipWith (*) ys (map lamb xs) xs = toInteger <$> [x*131+65|x<-[0..3]] ys = toInteger . M.size <$> [steps, steps', steps'', steps'''] in f 26501365 where compute' :: Int -> Steps -> Steps compute' 0 steps = steps compute' i steps = compute' (i-1) next where next :: Steps next = M.foldrWithKey nextSteps M.empty steps nextSteps :: (Int, Int) -> () -> Steps -> Steps nextSteps (x, y) _ = nextOne (x-1, y) . nextOne (x+1, y) . nextOne (x, y-1) . nextOne (x, y+1) nextOne :: (Int, Int) -> Steps -> Steps nextOne (x, y) acc = case input V.!? (y `mod` len) of Just line -> case line V.!? (x `mod` len) of Just Rock -> acc Just _ -> M.insert (x, y) () acc _ -> acc Nothing -> acc start = M.singleton (mid, mid) () mid = len `div` 2 len = V.length input main :: IO () main = do input <- parseInput "input" print $ compute input