-- requires cabal install --lib megaparsec parser-combinators heap vector module Main (main) where import Control.Applicative.Permutations import Control.Monad (void, when) import qualified Data.Char as C import Data.Either import Data.Functor import qualified Data.Heap as H import qualified Data.List as L import qualified Data.Map as M import Data.Maybe import qualified Data.Set as S import qualified Data.Vector as V import qualified Data.Vector.Unboxed as VU import Data.Void (Void) import Text.Megaparsec import Text.Megaparsec.Char import Debug.Trace exampleExpectedOutput = 167409079868000 data Category = X | M | A | S deriving (Eq, Show) data Op = Gt | Lt deriving (Eq, Show) data Action = Accept | Reject | Jmp String deriving (Eq, Show) data Rule = Cmp Category Op Int Action | RuleAction Action deriving (Eq, Show) type Workflow = (String, [Rule]) type Workflows = M.Map String [Rule] data Part = Part Int Int Int Int deriving (Eq, Show) type Parts = [Part] data Input = Input Workflows Parts deriving (Eq, Show) type Parser = Parsec Void String parseCategory :: Parser Category parseCategory = char 'x' $> X <|> char 'm' $> M <|> char 'a' $> A <|> char 's' $> S parseOp :: Parser Op parseOp = char '>' $> Gt <|> char '<' $> Lt parseNumber :: Parser Int parseNumber = read <$> some digitChar parseLabel :: Parser String parseLabel = try $ count' 2 4 letterChar parseAction :: Parser Action parseAction = char 'A' $> Accept <|> char 'R' $> Reject <|> (Jmp <$> parseLabel) parseRule :: Parser Rule parseRule = (RuleAction <$> parseAction) <|> (Cmp <$> parseCategory <*> parseOp <*> parseNumber <* char ':' <*> parseAction) parseWorkflow :: Parser Workflow parseWorkflow = (,) <$> parseLabel <* char '{' <*> some (parseRule <* optional (char ',')) <* char '}' parseWorkflows :: Parser Workflows parseWorkflows = M.fromList <$> some (parseWorkflow <* eol) parsePart :: Parser Part parsePart = Part <$> (string "{x=" *> parseNumber) <*> (string ",m=" *> parseNumber) <*> (string ",a=" *> parseNumber) <*> (string ",s=" *> parseNumber <* char '}') parseParts :: Parser Parts parseParts = some (parsePart <* eol) parseInput' :: Parser Input parseInput' = Input <$> (parseWorkflows <* eol) <*> (parseParts <* eof) parseInput :: String -> IO Input parseInput filename = do input <- readFile filename case runParser parseInput' filename input of Left bundle -> error $ errorBundlePretty bundle Right input' -> return input' type Interval = (Int, Int) data Combination = Combination Interval Interval Interval Interval deriving (Eq, Show) compute :: Input -> Int compute (Input workflows _) = compute' (Combination (1, 4000) (1, 4000) (1, 4000) (1, 4000)) [RuleAction (Jmp "in")] where compute' :: Combination -> [Rule] -> Int compute' comb (RuleAction Accept:_) = score comb compute' comb (RuleAction Reject:_) = 0 compute' comb (RuleAction (Jmp s):_) = compute' comb (workflows M.! s) compute' comb@(Combination (xl, xr) m a s) (Cmp X Lt n act:xs) | xr < n = compute' comb [(RuleAction act)] | xl >= n = compute' comb xs | otherwise = compute' (Combination (xl, n - 1) m a s) [(RuleAction act)] + compute' (Combination (n, xr) m a s) xs compute' comb@(Combination x (ml, mr) a s) (Cmp M Lt n act:xs) | mr < n = compute' comb [(RuleAction act)] | ml >= n = compute' comb xs | otherwise = compute' (Combination x (ml, n - 1) a s) [(RuleAction act)] + compute' (Combination x (n, mr) a s) xs compute' comb@(Combination x m (al, ar) s) (Cmp A Lt n act:xs) | ar < n = compute' comb [(RuleAction act)] | al >= n = compute' comb xs | otherwise = compute' (Combination x m (al, n - 1) s) [(RuleAction act)] + compute' (Combination x m (n, ar) s) xs compute' comb@(Combination x m a (sl, sr)) (Cmp S Lt n act:xs) | sr < n = compute' comb [(RuleAction act)] | sl >= n = compute' comb xs | otherwise = compute' (Combination x m a (sl, n - 1)) [(RuleAction act)] + compute' (Combination x m a (n, sr)) xs compute' comb@(Combination (xl, xr) m a s) (Cmp X Gt n act:xs) | xl > n = compute' comb [(RuleAction act)] | xr <= n = compute' comb xs | otherwise = compute' (Combination (xl, n) m a s) xs + compute' (Combination (n + 1, xr) m a s) [(RuleAction act)] compute' comb@(Combination x (ml, mr) a s) (Cmp M Gt n act:xs) | ml > n = compute' comb [(RuleAction act)] | mr <= n = compute' comb xs | otherwise = compute' (Combination x (ml, n) a s) xs + compute' (Combination x (n + 1, mr) a s) [(RuleAction act)] compute' comb@(Combination x m (al, ar) s) (Cmp A Gt n act:xs) | al > n = compute' comb [(RuleAction act)] | ar <= n = compute' comb xs | otherwise = compute' (Combination x m (al, n) s) xs + compute' (Combination x m (n + 1, ar) s) [(RuleAction act)] compute' comb@(Combination x m a (sl, sr)) (Cmp S Gt n act:xs) | sl > n = compute' comb [(RuleAction act)] | sr <= n = compute' comb xs | otherwise = compute' (Combination x m a (sl, n)) xs + compute' (Combination x m a (n + 1, sr)) [(RuleAction act)] score (Combination (xl, xr) (ml, mr) (al, ar) (sl, sr)) = (xr - xl + 1) * (mr - ml + 1) * (ar - al + 1) * (sr - sl + 1) main :: IO () main = do example <- parseInput "example" let exampleOutput = compute example when (exampleOutput /= exampleExpectedOutput) (error $ "example failed: got " ++ show exampleOutput ++ " instead of " ++ show exampleExpectedOutput) input <- parseInput "input" print $ compute input