-- very slow with runghc, use ghc -O3 -o second second.hs -- requires cabal install --lib megaparsec parser-combinators unordered-containers module Main (main) where import Control.Monad (void, when) import Data.Functor import Data.List qualified as L import Data.Map qualified as M import Data.Set qualified as S import Data.Void (Void) import Text.Megaparsec import Text.Megaparsec.Char import System.Exit (die) import Debug.Trace exampleExpectedOutput = 54 data Direction = N | S | E | W deriving Show data Blizzard = Blizzard Int Int Direction deriving Show data Input = Input { blizzards :: [Blizzard] , height :: Int , width :: Int , xend :: Int , xstart :: Int } deriving Show type Parser = Parsec Void String findBlizzards :: (Int, [Blizzard]) -> String -> (Int, [Blizzard]) findBlizzards (y, acc) line = (y+1, snd $ L.foldl' findBlizzards' (0, acc) line) where findBlizzards' :: (Int, [Blizzard]) -> Char -> (Int, [Blizzard]) findBlizzards' (x, acc) '#' = (x+1, acc) findBlizzards' (x, acc) '.' = (x+1, acc) findBlizzards' (x, acc) '^' = (x+1, Blizzard x y N : acc) findBlizzards' (x, acc) 'v' = (x+1, Blizzard x y S : acc) findBlizzards' (x, acc) '>' = (x+1, Blizzard x y E : acc) findBlizzards' (x, acc) '<' = (x+1, Blizzard x y W : acc) parseMapLine :: Parser String parseMapLine = some (char '.' <|> char '#' <|> char '>' <|> char '<' <|> char '^' <|> char 'v') <* eol parseInput' :: Parser Input parseInput' = do lines <- some parseMapLine <* eof let height = length lines start = head lines width = length start Just xend = L.elemIndex '.' $ last lines Just xstart = L.elemIndex '.' start blizzards = snd $ L.foldl' findBlizzards (0, []) lines return $ Input blizzards height width xend xstart parseInput :: String -> IO Input parseInput filename = do input <- readFile filename case runParser parseInput' filename input of Left bundle -> die $ errorBundlePretty bundle Right input' -> return input' type Position = (Int, Int) compute :: Input -> Int compute (Input blizzards height width xend xstart) = let firstTrip = compute' 0 $ S.singleton (xstart, 0) secondTrip = compute'' firstTrip $ S.singleton (xend, height - 1) in compute' secondTrip $ S.singleton (xstart, 0) where boundaries :: S.Set Position boundaries = S.fromList (([(x, y)|x<-[0..width-1], y<-[0, height-1]] L.\\ [(xstart, 0), (xend, height-1)]) -- north and south walls ++ [(x, y)|x<-[0, width-1], y<-[1..height-2]] -- east and west walls ++ [(xstart, -1), (xend, height)]) -- to prevent escaping to the north and south compute' :: Int -> S.Set Position -> Int compute' i pos | (xend, height-1) `L.elem` pos = i | otherwise = compute' (i+1) (step (i+1) pos) compute'' :: Int -> S.Set Position -> Int compute'' i pos | (xstart, 0) `L.elem` pos = i | otherwise = compute'' (i+1) (step (i+1) pos) step :: Int -> S.Set Position -> S.Set Position step i = L.foldl' eval S.empty where eval :: S.Set Position -> Position -> S.Set Position eval acc pos = S.union acc ((candidates pos S.\\ boundaries) S.\\ blizzards' i) where candidates :: Position -> S.Set Position candidates (x, y) = S.fromList [(x-1, y), (x, y), (x+1, y), (x, y-1), (x, y+1)] blizzards' i = S.fromList $ map (evalBlizzards i) blizzards evalBlizzards :: Int -> Blizzard -> Position evalBlizzards i (Blizzard x y N) = (x, ((y - i - 1) `mod` (height-2)) + 1) evalBlizzards i (Blizzard x y S) = (x, ((y + i - 1) `mod` (height-2)) + 1) evalBlizzards i (Blizzard x y E) = (((x + i - 1) `mod` (width-2)) + 1, y) evalBlizzards i (Blizzard x y W) = (((x - i - 1) `mod` (width-2)) + 1, y) main :: IO () main = do example <- parseInput "example2" let exampleOutput = compute example when (exampleOutput /= exampleExpectedOutput) (die $ "example failed: got " ++ show exampleOutput ++ " instead of " ++ show exampleExpectedOutput) input <- parseInput "input" print $ compute input