-- requires cabal install --lib megaparsec parser-combinators vector module Main (main) where import Control.Monad (void, when) import Data.Functor import Data.List qualified as L import Data.Maybe import Data.Vector qualified as V import Data.Void (Void) import Text.Megaparsec import Text.Megaparsec.Char import System.Exit (die) exampleExpectedOutput = 5031 type Line = V.Vector Char type Map = V.Vector Line data Instruction = Move Int | L | R deriving Show data Input = Input Map [Instruction] deriving Show type Parser = Parsec Void String parseMapLine :: Parser Line parseMapLine = do line <- some (char '.' <|> char ' ' <|> char '#') <* char '\n' return $ V.generate (length line) (line !!) parseMap :: Parser Map parseMap = do lines <- some parseMapLine <* char '\n' return $ V.generate (length lines) (lines !!) parseInstruction :: Parser Instruction parseInstruction = (Move . read <$> some digitChar) <|> (char 'L' $> L) <|> (char 'R' $> R) parseInput' :: Parser Input parseInput' = do m <- parseMap i <- some parseInstruction void $ optional (char '\n') <* eof return $ Input m i parseInput :: String -> IO Input parseInput filename = do input <- readFile filename case runParser parseInput' filename input of Left bundle -> die $ errorBundlePretty bundle Right input' -> return input' data Heading = N | S | E | W deriving (Eq, Show) data Cursor = Cursor Int Int Heading isOut :: Map -> Int -> Int -> Bool isOut m x y = isNothing line || isNothing tile || tile == Just ' ' where line = m V.!? y tile = fromJust line V.!? x stepOutside :: Map -> Int -> Int -> Int -> Heading -> Int -> Cursor stepOutside m s x y h i | (t, h) == (a, N) = proceed fw (fn + rx) E | (t, h) == (a, W) = proceed dw (ds - ry) E | (t, h) == (b, N) = proceed (fw + rx) fs N | (t, h) == (b, E) = proceed ee (es - ry) W | (t, h) == (b, S) = proceed ce (cn + rx) W | (t, h) == (c, W) = proceed (dw + ry) dn S | (t, h) == (c, E) = proceed (bw + ry) bs N | (t, h) == (d, N) = proceed cw (cn + rx) E | (t, h) == (d, W) = proceed aw (as - ry) E | (t, h) == (e, E) = proceed be (bs - ry) W | (t, h) == (e, S) = proceed fe (fn + rx) W | (t, h) == (f, W) = proceed (aw + ry) an S | (t, h) == (f, S) = proceed (bw + rx) bn S | (t, h) == (f, E) = proceed (ew + ry) es N where (tx, rx) = x `divMod` s (ty, ry) = y `divMod` s t = (tx, ty) proceed :: Int -> Int -> Heading -> Cursor proceed x' y' h' = case m V.! y' V.! x' of '.' -> step m s (Cursor x' y' h') (Move $ i - 1) '#' -> Cursor x y h a = (ax, ay) b = (bx, by) c = (cx, cy) d = (dx, dy) e = (ex, ey) f = (fx, fy) (ax, ay) = (1, 0) (bx, by) = (2, 0) (cx, cy) = (1, 1) (dx, dy) = (0, 2) (ex, ey) = (1, 2) (fx, fy) = (0, 3) (an, as, aw, ae) = (ay * s, (ay+1)*s-1, ax *s, (ax+1)*s-1) (bn, bs, bw, be) = (by * s, (by+1)*s-1, bx *s, (bx+1)*s-1) (cn, cs, cw, ce) = (cy * s, (cy+1)*s-1, cx *s, (cx+1)*s-1) (dn, ds, dw, de) = (dy * s, (dy+1)*s-1, dx *s, (dx+1)*s-1) (en, es, ew, ee) = (ey * s, (ey+1)*s-1, ex *s, (ex+1)*s-1) (fn, fs, fw, fe) = (fy * s, (fy+1)*s-1, fx *s, (fx+1)*s-1) step :: Map -> Int -> Cursor -> Instruction -> Cursor step _ _ (Cursor x y N) L = Cursor x y W step _ _ (Cursor x y S) L = Cursor x y E step _ _ (Cursor x y E) L = Cursor x y N step _ _ (Cursor x y W) L = Cursor x y S step _ _ (Cursor x y N) R = Cursor x y E step _ _ (Cursor x y S) R = Cursor x y W step _ _ (Cursor x y E) R = Cursor x y S step _ _ (Cursor x y W) R = Cursor x y N step m _ c (Move 0) = c step m s (Cursor x y h) (Move i) | isOut m x' y' = stepOutside m s x y h i | tile == '.' = step m s (Cursor x' y' h) (Move $ i - 1) | tile == '#' = Cursor x y h where (x', y') = case h of N -> (x, y-1) S -> (x, y+1) E -> (x+1, y) W -> (x-1, y) tile = m V.! y' V.! x' compute :: Input -> Int compute (Input m i) = 1000 * (y+1) + 4 * (x+1) + hv where xmin = length (V.filter (== ' ') (m V.! 0)) startingCursor = Cursor xmin 0 E s = length (m V.! 0) `div` 3 Cursor x y h = L.foldl' (step m s) startingCursor i hv = case h of E -> 0 S -> 1 W -> 2 N -> 3 main :: IO () main = do -- not doing the example, this solution is dependent on the shape of the input cube and sadly the example does not match it -- example <- parseInput "example" -- let exampleOutput = compute example -- when (exampleOutput /= exampleExpectedOutput) (die $ "example failed: got " ++ show exampleOutput ++ " instead of " ++ show exampleExpectedOutput) input <- parseInput "input" print $ compute input