-- requires cabal install --lib megaparsec parser-combinators module Main (main) where import Control.Monad (void, when) import Data.List qualified as L import Data.Map qualified as M import Data.Maybe (catMaybes) import Data.Set qualified as S import Data.Void (Void) import Text.Megaparsec import Text.Megaparsec.Char import System.Exit (die) exampleExpectedOutput = 2208 data Direction = E | W | NE | NW | SE | SW type Directions = [Direction] type Coordinates = (Int, Int, Int) type Floor = M.Map Coordinates Bool type Input = [Directions] type Parser = Parsec Void String parseDirection :: Parser Direction parseDirection = (string "se" *> return SE) <|> (string "sw" *> return SW) <|> (string "ne" *> return NE) <|> (string "nw" *> return NW) <|> (char 'e' *> return E) <|> (char 'w' *> return W) parseInput' :: Parser Input parseInput' = some (some parseDirection <* optional (char '\n')) <* eof parseInput :: String -> IO Input parseInput filename = do input <- readFile filename case runParser parseInput' filename input of Left bundle -> die $ errorBundlePretty bundle Right input' -> return input' surroundings :: Coordinates -> [Coordinates] surroundings (x, y, z) = [(x+1, y-1, z), (x-1, y+1, z), (x+1, y, z-1), (x-1, y, z+1), (x, y+1, z-1), (x, y-1, z+1)] clean :: Floor -> Floor clean = M.filter id expand :: Floor -> Floor expand floor = M.union floor $ M.foldrWithKey expand' M.empty floor where expand' :: Coordinates -> Bool -> Floor -> Floor expand' c True f = M.union f . M.fromList $ zip (surroundings c) (repeat False) expand' _ False f = f proceed :: Int -> Floor -> Floor proceed 0 f = f proceed i f = proceed (i-1) $ expand next where next :: Floor next = M.union (M.foldrWithKey compute' M.empty f) f compute' :: Coordinates -> Bool -> Floor -> Floor compute' c s acc | s && (neighbors == 0 || neighbors > 2) = M.insert c False acc | not s && neighbors == 2 = M.insert c True acc | otherwise = acc where neighbors = length . filter id . catMaybes . map (\a -> M.lookup a f) $ surroundings c compute :: Input -> Int compute input = M.size . clean. proceed 100 . expand . clean $ L.foldl' compute' M.empty input where compute' :: Floor -> Directions -> Floor compute' floor directions = case M.lookup destination floor of Just f -> M.insert destination (not f) floor Nothing -> M.insert destination True floor where destination :: Coordinates destination = L.foldl' run (0, 0, 0) directions run :: Coordinates -> Direction -> Coordinates run (x, y, z) E = (x+1,y-1,z) run (x, y, z) W = (x-1,y+1,z) run (x, y, z) NE = (x+1,y,z-1) run (x, y, z) SW = (x-1,y,z+1) run (x, y, z) NW = (x,y+1,z-1) run (x, y, z) SE = (x,y-1,z+1) main :: IO () main = do example <- parseInput "example" let exampleOutput = compute example when (exampleOutput /= exampleExpectedOutput) (die $ "example failed: got " ++ show exampleOutput ++ " instead of " ++ show exampleExpectedOutput) input <- parseInput "input" print $ compute input